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The family of all possible reaction mechanisms on a potential surface has an 
algebraic structure with potential applications in quantum chemical molecular 
design and synthesis planning. 

Transformation properties and equivalence relations of reaction paths on 
potential energy hypersurfaces lead to a topological definition of reaction 
mechanisms. The family of all fundamental reaction mechanisms on the 
hypersurface has a group structure, the fundamental group of an appropriately 
defined topological space. Isomorphism and homomorphism relations 
between fundamental groups of reaction mechanisms are used to characterize 
the chemically important topological properties of various subsets of a hyper- 
surface, or those of different excited state hypersurfaces. 
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I. Introduction 

A reaction mechanism on a potential surface can be represented by collections 
of reaction paths which are equivalent in the following sense: they involve the 
same reactants, a fixed sequence of transition structures and intermediates, and 
they lead to the same product. Evidently, the general topological properties of 
the potential energy hypersurface fundamentally influence the properties of 
reaction mechanisms. Based upon this realization a topological model has been 
suggested as a possible mathematical framework for computer-aided quantum 
chemical synthesis design [1, 2]. It has also been suggested that a topological 



44 P.G. Mezey 

model is more appropriate for the quantum-mechanical description of molecular 
structure and reaction mechanism, than the more conventional (and essentially 
classical-mechanical) geometrical model [1, 2]. Algebraic topology, applied in 
chemistry and physics, is somewhat reminiscent to applied group theory, since 
it also provides existence proofs and a clear description of some fundamental 
relations, in our case between all different chemical structures of a given overall 
constitution, as well as of all reaction mechanisms between them. General 
topology, however, has the promise of becoming an even more powerful tool than 
group theory, since it gives the most general mathematical description of open 
sets (needed in a quantum-mechanical model), continuity and continuous func- 
tions, such as potential energy hypersurfaces over nuclear configuration spaces. 

Whereas the above mentioned topological concept of reaction mechanisms con- 
forms with the conventional intuitive concept used by chemists, nevertheless, for 
equilibrium systems (and most reaction systems are such) a distinction between 
alternative intermediates that may easily interconvert into each other, is non- 
essential. For example, if compounds A, B, C, and D are related by the two 
formal reaction mechanisms 

A ~ C - ~  B 

A ~ D - ~ B  

but there is also a direct C~--~ D interconversion between the two alternative 
intermediates C and D, with an energy of activation less than that of any of the 
two overall reactions, then the distinction between the two formal mechanisms 
is non-essential. 

As far as reaction mechanisms are concerned, at a given upper limit for the total 
energy of the system, there are essential differences only between those reaction 
paths which cannot be converted into each other below this energy value. On 
the other hand, all reaction paths which can be deformed into one another below 
this energy limit, represent the same reaction mechanism at the given energy 
bound. At a higher energy bound there are fewer distinguishable reaction mechan- 
isms. At very high energy bounds all distinctions among chemical reaction 
mechanisms disappear, as nearly all nuclear configurations become accessible. 
Expressed differently, nearly all formal reaction paths become deformable into 
one another below an energy bound if this bound is high enough. 

Using an upper limit for energy as the main criterion, it is intuitively obvious 
that all the essentially different reaction mechanisms are fully determined by the 
topology of potential energy hypersurfaces. We shall make the above statement 
more precise by a formal application of homotopy theory and we shall derive 
an underlying algebraic principle. In this work, as in earlier parts I-II, an effort 
has been made to make this series of studies as nearly self-contained as practical 
for journal papers. In particular, no previous knowledge of homotopy theory is 
needed to develop our model, and chemical terminology is often used when 
possible. The topological concepts used throughout are described in part in Refs. 
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[ 1, 2]. For a more detailed introduction into combinatorial and algebraic topology 
and to homotopy theory the reader may consult references [3-6]. 

In this study we shall investigate some universal properties of a general system 
of all fundamental reaction mechanisms on a potential energy hypersurface. We 
shall show that this system is highly structured and that the relevant algebraic 
structure is the fundamental group of an appropriately defined topological space. 
In doing this we shall rely on some earlier results. In a previous study [7] a 
general n-dimensional (n = 3N, where N is the number of nuclei) nuclear con- 
figuration space "R has been replaced with a metric space M, also referred to as 
metric topological space (M, Td), by introducing a special metric d. This metric 
d, beyond giving internal structure to M, is consistent with the elimination of six 
degrees of  freedom corresponding to the laboratory frame translations and 
rotations of  the molecule as a whole. This metric preserves many features of the 
mass weighted Cartesian coordinates in the laboratory frame and is suitable for 
the introduction of  reaction topology ("catchment region" topology) Tc into M, 
turning it into a topological space (M, Tc). The (M, Tc) topologization of  M is 
suitable for a global analysis of energy hypersurfaces E(K), K ~ M, defined over 
the reduced nuclear configuration space M. For a local analysis of  Tc-open sets 
of M, representing individual chemical species, a differentiable manifold structure 
has been introduced [7]. 

It has been shown [8] that if certain open sets of the (M, Tc) topological space 
are multiply connected then the contribution of a single chemical structure to an 
overall reaction may lead to a variety of topologically non-equivalent reaction 
mechanisms. This is true even if the overall reaction involves a fixed sequence 
of chemical structures, and it leads to a fine classification of reaction mechanisms. 
This result has been obtained by considering homotopies (continuous deforma- 
tions) of reaction paths [8]. Homotopy theory however, can also be used for a 
more general analysis of reaction mechanisms. In this study we shall analyse the 
internal structure of the set of all distinct fundamental reaction mechanisms on 
the hypersurface. We shall show that this structure is indeed the fundamental 
group of  the topological space. Isomorphism and homomorphism relations of 
fundamental groups of various energy dependent relative topologies will be 
investigated. Relations between reaction mechanisms on various excited state 
hypersurfaces will be studied, in terms of relations between the representative 
fundamental groups. Finally, some interesting properties of higher dimensional 
homotopy groups of topological space (M, T") will be pointed out. 

2. Level sets and relative reaction topologies 

The energy hypersurface E(K) over M is generated by the continuous energy 
expectation value functional, implying that the actual mapping M ~ E(K) is a 
homeomorphism. Hence, each topological result in M has an equivalent counter- 
part on the energy hypersurface E (K),  consequently, we may refer to the topology 
of E(K) although the actual analysis is carried out in M. In fact, instead of M, 
only suitably chosen subsets of M will be investigated. 
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Analogously to the critical level sets [9] of a general nuclear configuration space 
"R, the level sets F(A) and F-(A) of M, with respect to energy hypersurface 
E(K) and energy value A, are defined as 

F(A) = {K: E(K)<-A} (1) 

F-(A) = {K: E(K) < A}, (2) 

respectively. The reaction topology Tc on M is defined with respect to "catchment 
regions" C(h, i) of M, i.e. in terms of subsets of M, each containing one 
distinguished point K (A, i). These points are extremities of steepest descent paths 
on E(K). A typical distinguished point K()t, i) is a critical point of E(K) (i.e. 
a point where the gradient vanishes), where index )t is the number of negative 
canonical curvatures at K(h,  i) and i is an index of ordering. 

The relative topology Tc/a (reaction topology relative to level set F-(A)) is 
defined by the following family of open sets in F-(A) c M: 

Tc/a = {O: O = F-(A) n Oc, Oc ~ Tc}. (3) 

Each set 

Ca(}k , i) = F-(A) n C()t, i) (4) 

is a Tc/a-open set by definition and each non-empty set of type (4) represents 
a chemical structure within level set F-(A). If  C = {B} is a basis of topology Tc 
then CA = {B n F-(A)} is a basis for the relative reaction topology Tc/a. 

Note that for an arbitrary energy value A level set F-(A) may well be discon- 
nected. Furthermore, its maximum connected components may be multiply con- 
nected, as a result of "cutting off" those parts of the energy hypersurface where 
it reaches or exceeds the value A. 

The relative metric topology Ta/A on F-(A) is defined analogously to Eq. (3), 
by replacing Tc by Ta. Intuitively, the metric d of M is simply "inherited" by 
F-(A). 

The relative topology Tc/a has some advantageous properties when compared 
to topology Tc: one may select a suitable energy value A and restrict the analysis 
of the hypersurface to the chemically most important low energy regions. It 
should be noted, however, that b y  formally taking A - ~ ,  F-(A) becomes M, 
i.e. the following treatment is applicable for the full space M. In this case 
F-(A) = M is simply connected. For the more interesting A < ~ cases the actual 
determination of the F-(A) level sets is based on contour-following algorithms [2]. 

3. General homotopies on potential energy hypersurfaces 

Consider two continuous mappings, p(O) and p(1), from a topological space (S, T') 
into space (F-(A), T"): 

pr p~,): (S, T') ~ (F-(A), T") (5) 
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where T' and T" are some topologies, e.g. T" can be chosen as Td/A or Tc/a. If 
there exists a continuous mapping 

H: (S, T')| T)~ (F-(A), T") (6) 

for which I is the unit interval, 

I = [0, 1] (7) 

provided with the usual metric topology T, and for every point, _s of S 

H(s, 0) = P(~ Vs ~ S (8) 

H(_s, 1)=P(')(_s) V s e S  (9) 

then mappings p(O) and p(1) are homotopically equivalent, denoted by p(O) _ p(1), 
and H is a homotopy (continuous deformation) from p(O) to p(1). 

If  for every _So element of a subset So of S the images of all p(t) mappings agree 
for every t, where 

t E I = [ 0 , 1 ]  (10) 

and 

H(_s, t) = P(0(s), (11) 

that is, if 

P(~ = PU)(_So) = PU)(So), V_So~ So c S, Vt ~ I (12) 

then p(O) is homotopic to P(~), relative to subset S~ p(O)_ p(l)rel So. If  So = Q, 
the empty set, then one obtains p(O)_ p(,), i.e. the "free" homotopy is a special 
case of the relative homotopy. 

The following general result, (sometimes referred to as the "glueing" lemma) is 
often used in the analysis of various homotopies [4]: 

If the (S, T') topological space is the union of two closed sets, V~ and V2, 

S = V, u V2 (13) 

and if for the continuous (T', T"-continuous) mappings 

P,: V1-->(M, T") (14) 

e2: V2-,(M, T") (15) 

their images agree on V~ c~ V2, 

P,(s)=P2(s) V_se V,n V2 (16) 

then the mapping/)3, defined as 

P3: (S, T')~(M, T") (17) 

P3(s)=P, (s )  "q_sE Vx (18) 

P3(_s)=P2(_s ) V se V2 (19) 



48 P.G. Mezey 

i.e. the mapping obtained by "glueing" P1 and P2 together, is also T', T"- 
continuous. 

In particular, the CA(A, i) relative chemical structures in level set F-(A)  (i.e. the 
relative catchment regions) give a partitioning of F-(A),  consequently their unions 
are open-closed sets within the,relative topology Tc/a. Such unions have been 
proposed earlier as an alternative definition of reaction mechanisms; a sequence 
of neighboring chemical structures in the reaction topology represents a reaction 
mechanism [2, 8]. Consequently, if S itself is a union of relative chemical struc- 
tures, with the same Tc/a topology, then V~ may be chosen as a reaction 
mechanism, (relative to F-(A))  and V2 as any Tc/A-Closed set containing the 
relative complement of V1 in $. Now the above quoted general result (glueing 
lemma) is applicable and for any pair of continuous functions P1 and P2 defined 
on relative reaction mechanism V~ and on set V2, respectively, and fulfilling the 
"overlap condition" (condition (16)), the "unified" function P3 is also continuous. 
In particular, if V1 and V2 are two overlapping reaction mechanisms, then the 
global continuity of P3 on S is assured, no matter how strangely P1 and P2 behave 
in the non-overlapping regions. This property allows one to carry out extensive 
deformations of potential surfaces (e.g. if mappings to compact manifolds are 
required [8]) without altering the essential characteristics and mutual relations 
of reaction mechanisms. 

The relative homotopy with respect to a subset So c S is an equivalence relation 
and all mappings P, P ' , . . .  that are related to each other by some homotopy 
relative to So, form an equivalence class P~. Such equivalence classes generate 
a partitioning of the set P of all continuous mappings form S to F-(A)  which 
agree on subset So: 

P = {P: (S, T') ~ (F-(A),  T"), P(s_) = P~ V_s ~ So C S} (20) 

for some specified P~ mapping on So, and 

P.  -- {P: P c P, P - P~ rel So} (21) 

where P. is any representative from equivalence class P~, and where 

P = U P~ (22) 
cr 

and 

P ~ P ~ , = Q  V~#~,. (23) 

If P -  P' where P' maps the entire set S to a single point Ko E F-(A) ,  then P is 
homotopic to a constant. If  the i: S ~ S identity mapping is homotopic to a constant, 
then S is contractible to a point. If  the level set F-(A)  of the potential energy 
hypersurface is contractible to a point then every continuous 

P: (S, T') ~ (F-(A),  T") (24) 

mapping is homotopic to a constant. If  (S, T') is chosen as (F-(A),  T") then 
contractibility of level set F-(A)  implies that there is only one homotopy class, 
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P itself. This is indeed the simplest case and we are interested mostly in non- 
contractible (F-(A), T") topological spaces, where different homotopy classes 
have different chemical significance. 

4. Reaction path homotopies 

In order to introduce the fundamental group of  general reaction mechanisms we 
need a description of the concepts of homotopy type and homotopy invariants in 
(F-(A), T"). The fundamental group itself will be one such invariant. Further- 
more, we also need a description of some homotopy properties of  reaction paths 
and a definition of fundamental reaction mechanisms. 

If for two topological spaces, (S, T') and (F-(A), T"), there exist two continuous 
mappings 

P: (S, T') ~ (F-(A), T") (25) 

Q: (F-(A), T") --> (S, T') (26) 

such that the composition 

Q. P: (S, T')-~ (S, T') (27) 

is homotopic to the identity mapping 

i: (S, T') ~ (S, T') (28) 

and similarly, if the composition 

n. Q: (F-(A), T") ~ (F-(A), r") (29) 

is homotopic to the identity mapping 

j: (F-(A), T") ~ (F-(A), T") (30) 

then (S, T') and (F - (A) ,  T") are of the same homotopy type. If  the two spaces 
are homeomorphic,  i.e. topologically equivalent, then they are necessarily of the 
same homotopy type, but the converse is not true. Belonging to the same homotopy 
type is also an equivalence relation with equivalence classes larger than the classes 
of topological equivalence, since the former is a weaker equivalence relation than 
the latter. In this study we are also interested in those cases, where the two 
homotopy types involved are different. In particular, we shall study the special 
case where S is an interval on the real line (e.g. I)  provided with the usual metric, 
that space is evidently of  different homotopy type than a general relative reaction 
topology (F - (A) ,  Tc/A) or topological space (F- (A) ,  Td/A). 

A homotopical invariant is an object that is the same for all topological spaces 
that are of  the same homotopy type. Evidently, a homotopical invariant is also 
a topological invariant, but a topological invariant is not necessarily homotopi- 
cally invariant. The most important homotopical invariants of the topological 
space (F-(A), Td/A) a r e  its homotopy groups I I , ( F - ( A ) ,  Td/A. Ko), and in par- 
ticular the one dimensional homotopy group, the fundamental group of reaction 
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mechanisms, HI(F-(A),  Ta/A, Ko). In order to give their definitions, we first give 
a very general definition of reaction paths, and describe some of their intuitively 
evident properties. 

A reaction path P in topological space (F-(A),  Ta/A) is a continuous mapping 
from I = [0, 1] into F-(A):  

P: (1, T)-) (F-(A), Td/A) (31) 

where T is the usual metric topology in I. That is, a reaction path is a special 
case of mappings (5), obtained by replacing (S, T') by (1, T). Note that a 
topological reaction path P is not always a trajectory in the semiclassical sense, 
but all such trajectories are topological reaction paths. Any single path (irrespec- 
tively whether a semiclassical trajectory or not) is in a formal contradiction with 
the uncertainty principle, and we shall attempt to circumvent (at least in part) 
this contradiction and to obtain a topological representation by considering 
families of homot0pically equivalent reaction paths. 

Points P(0) and P(1) are the origin and extremity, resp., of reaction path P. The 
inverse reaction path p-1 of P is defined by 

P- l (u )=P(1-u )  Vu~I.  (32) 

Evidently, the extremity of P coincides with the origin of p-1 and vice versa. P 
and p-1 define the same subset of F-(A),  but they run through the same points 
in opposite sense. One should not confuse the inverse reaction path P-~ of path 
P with the inverse (p)-I of mapping P, the latter being a mapping itself: 

(p)-l: (F-(A),  Trd/Af --) (1, T) (33) 

where (F-(A),  T'd/A)' is a subset of (F-(A),  Td/A). 

If P~ and P2 are two reaction paths fulfilling the condition 

Pl(1) -- P2(0) (34) 

i.e. the extremity of P~ coincides with the origin of P2, then the product reaction 
path P~P2 is the path P3 

P3: (1, T) --) (F-(A),  Td/A) (35) 

for which 

Pa(u)=PI(2u), O<-u <-1 (36) 

21--- u -< 1. (37) P3(u) = Pz(2U - 1), 

In notation, 

P3 = PIPE. (38) 

Due to the general result ("gluing" lemma) quoted above (Eqs. 13-19), the 
product reaction path P3 is also continuous, and it is also a reaction path itself. 
The product reaction path should not be confused with the product of the two 
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functions Pl (u), (nor with the chemical product obtained after completion of the 
reaction). Intuitively, one may picture P3 as the continuation of P1 by P2. 

If for a reaction path P the entire image of I is a single element K ~ F-(A) ,  

P(I )  = K ~ F- (A)  (39) 

then P is called a zero path. (This name, as we shall see, is not very fortunate, 
but the name "unit reaction path" that may appear more consistent with the 
following group theoretical treatment, can be even more misleading.) 

A path P is a closed reaction path if its origin coincides with its extremity: 

P(0) = P(1). (40) 

For example, the product path pp- i  and P-IP are both closed reaction paths. 

If  P1 and P2 are two reaction paths with common origins and common extremities, 

P~(0) = 1~ (41) 

n,(1) -= P2(1) (42) 

then we shall regard P1 path-homotopic (or in short, homotopie) to P2, P1 ~ P2, if 
they are homotopic relative to the subset Io c I 

Io= {0, 1} (43) 

where in the general definition of relative homotopy [Eqs (6-11)] (/, T), Io, u 
and Td/A are substituted for (S, T'), So, _s and T", respectively. Intuitively, P1 
and /'2 are homotopic relative to the fixed endpoints PI(0)= P2(0) and Pl(1)= 
P2(1). 

The following reaction path properties are intuitively evident and (what does not 
always follow) are relatively easy to prove (hence their proofs will be omitted): 

(i) If  for reaction paths Pb P2, P3 and P4 
P, - / ' 3  (44) 
P2 ~ P4 (45) 

product path 

exists, (46) 

reaction path 

exists, (47) 

e, e 2 -  e3e4 (48) 

(ii) If  two reaction paths are homotopic then their inverse reaction paths are also 
homotopic: 

P, ~ P 2 ~  P~ l~  P~'. (49) 
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(iii) If  P~ is an arbitrary reaction path and if P2 is a zero reaction path 

P2(I) = K ~ F - ( A )  (50) 

such that 

P~P2 exists (51) 

then 

P1P2 ~ P1. (52) 

(Similarly, from the existence of P2P1 P2P1 ~ P1 follows.) 

(iv) If for reaction paths P1, P2 and P3 

PIP2 exists (53) 

and 

P2P3 exists (54) 

then both 

(P1P2)P3, PI(P2P3) exist (55) 

and 

( P1P2)P3 ~ P,( P2P3). (56) 

(v) For any reaction path P1 there exists a zero path Pz, 

P2(I) = K ~ F - ( A )  (57) 

such, that 

PIP~ l ~ P2. (58) 

(Evidently P11P 1 is also homotopic to a zero path.) 

(vi) Let P~ and P2 be such a pair of reaction paths that 

P1P21 exists (59) 

and it is a closed reaction path: 

P, P2-1(0) = PIP2'(1). (60) 

In this case 

P , P ~ ' ~  P3Cz> P , ~  P2 (61) 

where P3 is a zero reaction path. That is, a closed P~P~I reaction path is homotopic 
to a zero path if and only if P~ is homotopic to P2- 

We shall use the above properties (i)-(vi) to demonstrate the group properties 
of the fundamental group of reaction mechanisms, and to prove some isomorph- 
ism and homomorphism relations. 
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5. The fundamental group of reaction mechanisms 

In a topological treatment of chemical reactions, and in fact in any quantum 
mechanical treatment, it is inappropriate to consider individual reaction paths 
only, just as it is inappropriate to consider a ,fixed nuclear geometry when 
describing a molecule. In the topological model chemical structure is defined as 
an open set of nuclear geometries (a catchment region C(A, i)), hence it is natural 
to regard a topological reaction mechanism as a set of reaction paths, which 
paths are equivalent in certain sense. In this study we shall regard homotopical 
equivalence of reaction paths as the mathematical device that defines a general 
topological reaction mechanism. 

Take an arbitrary point Ko c F-(A) and consider all closed reaction paths with 
extremity at Ko. If P1 is such a reaction path, then denote the equivalence class 
of paths which are homotopic to P, by [Pj]: 

[P,] = {P: P - P1, P,(0) = PI(1) = Ko}. (62) 

In the given level set F-(A)  with upper limit A for energy, [Pl] is a closed 
topological reaction mechanism, referred to as a fundamental reaction mechanism. 
Since any reaction path within level set F-(A)  must occur as a segment of some 
P closed path, segments of the fundamental reaction mechanisms describe all 
possible reaction mechanisms in F-(A).  

The product of such homotopy classes (i.e. the algebraic product of fundamental 
reaction mechanisms) is defined by 

[P,][P2] = [P, P2]- (63) 

According to property (i), this definition is independent of the actual choice of 
reaction paths P1 and P2 representing fundamental reaction mechanisms [P1] and 
[P2], respectively, since from P 1 -  P3 and P2 -P4  the homotopic equivalence 
P1P2~ P3P4 follows, hence 

[P3][P4] = [P3P4] = [P, P2]- (64) 

That is, the product [P,][P2] is uniquely determined by reaction mechnisms [P1] 
and [P2]. 

We show now that the above defined product generates a group structure in the 
family of homotopy classes (in the family of fundamental reaction mechanisms) 
of all reaction paths passing through point Ko ~ F-(A).  

Closure property: the product is closed since [Pal[P2] is a fundamental reaction 
mechanism (homotopy class) of reaction paths passing through Ko, by definition. 

Associative property: by definition (63) 

[(Pt][P~])[P3] = [P, P2][P3] = [(P1P2)P3] (65) 

and 

[ P1]([ P2]E P3]) = [ P,]E P2P3] = E PI( P2P3) ]. (66) 



54 P.G. Mezey 

But from property (iv) (P1P2)P3-PI(P2P3) hence 

([ P,][ P2])[ P3] = [ P,]([ P2][ P3]). (67) 

Unit element: let us denote by [1] the homotopy class of zero reaction path at 
point Ko: 

[1] = { P : P  ~ PKo, Pro(I) = Ko}. 

Then, property (iii) implies that for any reaction mechanism [P~] 

(68) 

[P,][1] = [P,] (69) 

hence [1] is the unit element. (Since the multiplicative convention is used for 
groups throughout, for this reason one could, perhaps, find some justification 
calling the zero reaction paths "unit" reaction paths. These paths, however, refer 
to "no reaction" and we believe the name adopted is more appropriate.) 

Inverse: According to property (v) for any reaction mechanism [P1] 

[P,][P]-'] = [l] (80) 

hence [p]-l] is the inverse reaction mechanism of [PI] every reaction mechanism 
[P] has an inverse. 

This proves that the family of fundamental reaction mechanisms defined by Eq. 
(62) is a group, with product defined by Eq. (63). We shall use the 
H~(F (A), Ta/A, Ko) notation (or in short, the II~ notation if no detailed specifica- 
tion is needed) for this group, and we shall refer to it as the fundamental group 
of  reaction mechanisms. 

Group II~ describes the internal structure of a family of reaction mechanisms 
which are indeed topological, i.e. free from the usual geometrical constraints of 
reaction paths, with one apparent exception: H1 refers to a point Ko6 F-(A) .  
This "geometrical remnant", however, can be removed relatively easily. We show 
that there is a considerable degree of freedom in choosing Ko, without affecting 
the group structure and the essential properties of reaction mechanisms. 

More precisely, we show that if level set F (A) is arcwise connected then the 
fundamental groups II1( F -  ( A ) , Td / A, Ko) and III(F-(A),  Td / A, K1) are isomorphic 
for any two points Ko, K l c  F-(A) .  

Take any reaction path P~ such that 

P,(O)= P,(1)= Ko. (71) 

Since F (A) is arcwise connected there exists a (generally non-unique) reaction 
path R1 in F - ( A )  such that it leads from Ko to KI: 

R~(0) = Ko (72) 

Rl(1) = Kl. (73) 
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Then reaction path QI, defined as 

QI =(RTIP~)R~ (74) 

is a closed path passing through KI: 

Q~(0) = Q,(1)= K,. (75) 

Let us define a mapping V from homotopy classes [P] based on Ko to homotopy 
classes [Q] based on Kj by 

VEP] = [Q]. (76) 

Then [P] determines V[P] uniquely. Conversely, V[P] also determines [P] 
uniquely, since from 

(R, '  P,)R~ ~ (RT~ Pz)R, (77) 

the homotopy relation 

P, - P2 (78) 

follows, according to properties (iv) and (v). Furthermore, for any reaction path 
Q through point Kl 

Q-RT;((R,  Q)RTI)R, (79) 

hence any [Q~] homotopy class of reaction paths through point K1 is of the form 
V[P] for some [P] reaction mechanism. Hence V is a one-to-one and onto 
mapping of the family of Ko-based reaction mechanism to the family of K~-based 
reaction mechanisms. Since according to properties (iv) and (v) 

V[P~] V[P2] = [(RT~P,)R,][(RIIp2)R,] = [(R~(P~P2))R,] = V[P~P2] (80) 

the product is "inherited" and the transformation V is an isomorphism between 
fundamental groups I~I(F-(A), Td/A, Ko) and III(F (A), Ta/A, K1). Hence Ko 
can be chosen freely within any arcwise connected level set F-(A) and the 
resulting group structure of reaction mechanisms remains invariant. For arcwise 
connected level sets of the potential energy hypersurface the specification of 
point Ko can be omitted and we may write III(F-(A), Ta/a) for the fundamental 
group of reaction mechanisms. 

6. Isomorphism and homomorphism relations for groups of reaction mechanisms 

If there are two level sets, FT(A) and F~(B) (on the same or possibly on two 
different potential energy hypersurfaces), provided with topologies T~' and TJ, 
respectively, and if 

f :  (FT(A), T~)-~ (Fj(B), T~) (81) 

u TI! is a Tj, 2--continuous mapping then for any point Koc FT(A) there exists a 
homomorphism 

f* :HI( F~( A ), T'[, Ko) --" III(Fs T'~,f( Ko) ) (82) 

between the corresponding fundamental groups of reaction mechanisms. 
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In order to show this, take two reaction paths P1 and P2 in FI(A) ,  such that 

PI(0) = P,(1) = P2(0) = P2(1) = Ko~ FT(A). (83) 

Define reaction paths Ql and Q2 in F~(B) by the compositions 

Q, = f "  P1, Ql(U)-=.f(P,(u)), Vu ~ I (84) 

and 

Q2---f" P2, Q2(u) =f(P2(u)), Vu ~ I. (85) 

Consequently, 

QI(0) = Q,(1) = Q2(O) = Q2(1) =f(Ko)~ F2(B). (86) 

If P~ - P2 then there exists a Hi: 12-+ (FT(A), T~') homotopy such, that 

Hi(u, O) = P,(u) (87) 

H,(u, 1) = P2(u) (88) 

Hl(0, v ) = H ( 1 ,  v )=Ko V v c I  (89) 

where Eq. (83) has been taken into account. Define a mapping H2:I2~ 
(F2(B), T~) by 

H2(u , 19)=f(H,(u, v) ). (90) 

Then HE is continuous and 

H2(u, O) = f (  Pl(U)) = Q,(u) (91) 

H2(u, 1) = f(P2(u)) = Q2(u) (92) 

/-/2(0, v) = H2(1, v) =f(Ko) Vv 6 1 (93) 

hence reaction paths Q1 and Q2 of F2(B) are also homotopic: 

Q, ~ Q2. (94) 

If now we define a mapping f*  of reaction mechanisms as 

f*[P]  = [ f .  P] (95) 

then f*  is a unique assignment of all reaction mechanisms of FI(A) with reference 
to Ko to some reaction mechanisms of F2(B) with reference to f(Ko). 

If P3 = P~P2 is the product reaction path as defined by Eqs. (36)-(37), and Q3 is 
the reaction path in F2(B) defined by the composition 

Q3 =f"  P3 

a3(u)=f(Pl(2U)),  O~u-< 1 

Q3(u) =f(Pz(2U-  1)), 1_< u -< 1 

then Q3 is also a product path 

Q3 = QI Q2 

(96) 

(97) 

(98) 

(99) 
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and for the reaction mechanisms relation 

f*[P1]f*[P2] = [Q1][Q2] = [Q1Q2] = f*[P ,  P2] (100) 

follows, that is, the induced mapping f*  is indeed a homomorphism of fundamental 
group III(Fi-(Q),  r] ' ,  Ko) to 1-I1(F~(B), T~,f(Ko)). 

From a geiaeral result of homotopy theory, i.e. from the fact that the fundamental 
groups of two spaces of the same homotopy type are isomorphic [4], it follows 
that if f is a homeomorphism, then isomorphism of the two groups follows. This 
latter result for the special case of the groups of reaction mechanism can also 
be shown by interchanging the roles of the two spaces in the above proof  i f f  is 
a one-to-one and onto mapping. 

Isomorphism of the two groups also follows from the following conditions: if 
there exist two continuous mappings f and g, 

f :  (FT(A), T]') ~ (F~(B), T~) 

g : (F~(B) ,  T~) ~ (FT(A), T~') 

such that 

g(f (  Ko) ) = Ko~ FT( A) 

and 

g.  f ~  i rel Ko 

f .  g ~ j  re l f (Ko)  

(101) 

(102) 

(103) 

(104) 

(105) 

where i a n d j  are the identity maps in (F~-(A), T~') and (Fz-(B), T~), respectively, 
then the two fundamental groups of reaction mechanisms are isomorphic. 

The above results have some interesting chemical implications. Let us consider 
a special case, where both F;(A) and F~(B) refer to the same energy hypersurface 
but the energy values A and B are different, 

A < B .  (106) 

Let us assume that both level sets are connected (simply or multiply connected). 
If  during an A ~  B energy change no critical level of E(K)  is encountered (a 
critical level is the energy of a critical point, say that of K(A, i), of  E(K)) ,  then 
the connectedness properties of the level sets remain invariant [9]. Hence there 
exists a homeophorphism between the two level sets, consequently, the two 
fundamental groups of reaction mechanisms in the two level sets are isomorphic. 

If, on the other hand, during the A-~ B energy change the connectedness proper- 
ties of level sets also change, then, in general, no homeomorphism can be 
guaranteed between them, and it is possible that continuous mappings exist only 
from one space to a subset of the other. This implies only a homomorphism 
between the two fundamental groups of reaction mechanisms. Note that a 
necessary condition for a change in connectivity of level sets is the existence of 
a critical level within the (A, B] open-closed energy interval [9]. Nevertheless, 
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the occurrence of critical levels, hence changes in connectedness, are not sufficient 
conditions for a difference between the two fundamental groups (i.e. for the 
nonexistence of an isomorphism). Using a simple geographical analogy, the 
connectedness of the level set of a lake (i.e. that of the flooded area) changes if 
the water level reaches the highest saddle point on the land behind a hill, turning 
the hill into an island. If  this is the only topological change then no homeomorph- 
ism exists between the old and new level sets, hence there is only a homomorphism 
between the two fundamental groups. Evidently, there is a new route for boat 
trips behind the hill, hence the family of reaction mechanisms is "richer" in the 
new level set than in the old one. It is easy to see that in such a case 
II1(FI(A),  T~', Ko) is a subgroup of III(F~-(B), T~, Ko), and in fact the same 
follows if the connectivity increases monotonically as A ~ B. 

However, if during the A-~ B flooding precisely one new island is formed, and 
in addition, the water level also covers the highest point of one old island, then 
the connectivity changes cancel out and in spite of the presence of critical levels 
within (A, B] a homeomorphism canbe  given between the two level sets and the 
two fundamental groups of reaction mechanisms are isomorphic. Note, however, 
that in this example there is no net change in connectedness. 

The fundamental groups of  reaction mechanisms depend indirectly on the energy 
value A of level sets F-(A), through connectivity changes, and our conclusions 
can be summarized as follows: 

(i) If  there is no connectivity change during energy change A-~ B (for which a 
sufficient condition is that no critical level exists in (A, B]), then the fundamental 
groups of reaction mechanisms are isomorphic within [A, B]. 
(ii) If  the net connectivity of level sets changes (for which a necessary condition 
is the existence of a critical level in (A, B]) then in general only a homomorphism 
can be guaranteed between the two groups. 
(iii) If  in the [A, B] interval the connectivity of level sets changes monotonically, 
then the fundamental group of reaction mechanisms in the level set of lower 
connectivity is a subgroup of the other group. 

Another important example for the application of isomorphism - homomorphism 
conditions is the case of excited state energy hypersurfaces. Considering e.g. the 
ground state and one excited state hypersurface, a homeomorphism between the 
two relevant level sets assures that the main structural features of the two families 
of reaction mechanisms on the two surfaces are essentially the same, the two 
fundamental groups being isomorphic. If  no homeomorphism, only continuous 
mappings exist between the two spaces, then the systems of reaction mechanisms 
are at most similar, one having a richer variety than the other, i.e. in this case 
only a homomorphism exists between the two groups. The simplest possible case 
is the simply connected level set F-(A) where every reaction path P is contractible 
to a point. In this case the fundamental group has one element only, [1], the 
"zero" reaction mechanism. The simplest example for this (uninteresting) case 
is the level set of a single basin with no internal features in it, hence without real 
reaction mechanisms. 
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7. n-Dimensional homotopy groups of energy level sets on hypersurfaces 

We have obtained the definition of the fundamental group of reaction mechanisms 
by considering properties of reaction path homotopies. The concept of path, 
however is essentially a geometrical hence a classical mechanical one and it is 
in a formal contradiction with the uncertainty principle of quantum mechanics. 
This contradiction has been, at least in part, circumvented by considering distribu- 
tions (open sets) of homotopically equivalent reaction paths. The question arises, 
however, is it possible to describe the fundamental topological - algebraic 
structure of potential energy hypersurfaces without relying on the concept" of 
reaction paths? The n-dimensional homotopy groups appear to represent a step 
in the right direction. There is also a more practical reason for considering higher 
dimensional homotopy groups: they represent additional invariants which can 
be used for characterizing topological space ( F - ( A ) ,  Ta/A). We shall also see 
that in the special case of n = 1, we get back the fundamental group of reaction 
mechanisms derived above. 

Let I,, be an n-dimensional cube, the subset of the n-dimensional euclidean space 
containing all the points which have coordinates (u~, u2 , . . . ,  u,) fulfilling the 

0-<ui-< 1 ( i = l , . . . , n )  (107) 

condition. The J, boundary of In is the union of all points of I .  for which at 
least one coordinate ul is either 0 or 1. We assume the usual topology T, for I ,  
and we shall be particularly interested in its open interior. 

Consider continuous mappings 

Pl, P2: (I,, T , ) ~ ( F - ( A ) ,  T") 

such that 

PI(J,) = P2(J,) = Ko~ F - ( A ) .  

The product Po = P~ P2 is defined as 

Po(ul, u2 , . . . ,  un) = Pl(2ub u2,. . ., u,),  

Po(Ul, u2,. �9  un) = P2(2ul - 1, u2 , . . . ,  u,),  

Evidently, Po is also continuous and 

Po(J.) = Ko. 

Consider two additional continuous mappings 

P3, P4:(In, T , ) ->(F- (A) ,  T") 

such that 

P3(L) = P4(J~) = Ko. 

If  P~ ~ P3 rel J. then there exists continuous mapping 

(lO8) 

(109) 

0-<ul-<�89 (110) 

1-<Ul-< 1. (111) 

(112) 

(113) 

(114) 

f :  (/,, T , ) |  T)--> ( F - ( A ) ,  T") (115) 
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such that 

f (u l ,  u2,. . . ,  u,, O) = P~(ul, u2 , . . . ,  u,) (116) 

f (u l ,  u2 , . . . ,  u~, 1)= P3(Ul, u2 , . . . ,  u,) (117) 

f ( z l ,  z 2 , . . . , z ~ , v ) = K o  Vv (118) 

where (zl, Z 2 , . . . ,  Zn) C "-In and v ~ L Similarly, if P 2 -  P4 rel J,, then a mapping g 
is defined analogously. 

Let us consider a third mapping, 

h:(In, Tn)| T ) ~ ( F - ( A ) ,  T") 

defined by 

h(Ul, u2, . . . , Un, I ) )=f (2ub  U2,.. . ,  U,, V), 

h(ul, u2 , . . . ,  u,, v) = g ( 2 u l -  1, u2 , . . . ,  un, v), 

Then h is continuous and 

h(ul, u2,.. ., u,, O) = (PIP2)(Ul, u2 , . . . ,  u,) 

h(ul, u2 , . . . ,  u,, 1) = (PaP4)(ul, u2 , . . . ,  u,) 

h(zl, Z 2 ,  . . . , Zn ,  I ) )  = K O. 

(119) 

O-- < ul-<�89 (120) 
1 ~---ul--- 1. (121) 

(122) 

(123) 

(124) 

Consequently, if PI - P3 rel J, and P2 ~ P4 rel Jn then PIP2 ~ P3P4 rel J, follows. 

Consider the family {[P]} of all homotopy classes [P] of all P mappings satisfying 

P: (In, T , ) ~  (F - (A ) ,  T") (125) 

P(J~) = Ko~ F - ( A ) .  (126) 

The product of homotopy classes [P1] and [P2] is defined uniquely by 

[P,][P2] = [P1P2], [P,], [P2] ~ {[P]) (127) 

that definition is meaningful as it follows from the properties of mapping h. With 
respect to the above defined product the family {[P]} of homotopy equivalence 
classes form a group, the n-dimensional homotopy group I I , (F - (A) ,  T", Ko). 

Its group properties and other properties can be proven similarly to the case of 
the fundamental group of reaction mechanisms, in fact, if n = 1 this latter group 
is obtained. If  F - ( A )  is arcwise connected then H , (F - (A) ,  T", Ko) is isomorphic 
with H , ( F - ( A ) ,  T", K1) for any choice of Ko, KI ~ F - (A) .  The homotopy groups 
are homotopy invariants and homotopy groups of homeomorphic spaces are 
isomorphic, which properties can be utilized in comparing homotopy groups of 
various level sets and excited state energy hypersurfaces. 

Higher dimensional (n > l) homotopy groups describe the algebraic properties 
of interconversion processes of higher dimensional subsets of level set F - ( A ) ,  
as opposed to the fundamental group of reaction mechanisms which is based on 
the concept of reaction paths, i.e. on interconversion processes of one dimensional 
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subsets ,  themselves  desc r ib ing  t r ans fo rmat ions  o f  i nd iv idua l  points of  F-(A). As 

h o m o t o p i c a l  invar iants ,  the  n -d imens iona l  h o m o t o p y  groups  give a de ta i led  
a lgebra ic  cha rac te r i za t ion  o f  level sets o f  the  po ten t ia l  energy hypersur face .  
Never the less ,  it  is the  specia l  case of  the one d imens iona l  h o m o t o p y  group ,  i.e. 
the f u n d a m e n t a l  g roup  o f  reac t ion  mechan i sms ,  which  is the a lgebra ic  - topo log i -  
cal r ep re sen t a t i on  o f  q u a n t u m  chemical  r eac t ion  mechan i sms ,  tha t  re ta ins  the 
most  o f  the  conven t iona l  mechan is t i c  concepts  o f  chemistry.  

In  a subsequen t  s tudy  we shall  descr ibe  some o f  the chemica l ly  impor t an t  
p roper t i e s  o f  f u n d a m e n t a l  g roups  o f  reac t ion  mechan i sms  in terms o f  the i r  
genera to r  sets. These  gene ra to r  sets con ta in  cer ta in  d i s t ingu ished  reac t ion  
mechan i sms  as e lements ,  which  reac t ion  mechan i sms  will  be used  for  the  ac tua l  
cons t ruc t ion  o f  the  f u n d a m e n t a l  groups ,  and  for  a de ta i l ed  analys is  o f  the  re la t ions  
be tween  such groups  at var ious  u p p e r  b o u n d s  for  energy.  
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